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Introduction 

In robotics, one of the more challenging areas is sharing knowledge across widely 
disparate robotic platforms. The main reason why heterogeneous robots need to share 
their knowledge with each other is to achieve a teamed task efficiently. Since, in this 
case, each robot is equipped with radically different sensors, a framework to share 
sensor data with other robots and efficiently represent them is essential. However, 
classical knowledge representations (e.g., symbolic representation and connectionist) 
have several deficits such as the frame and symbol grounding problems, and difficulty 
in computing similarity between concepts.  

In order to address these problems, we use the conceptual space that Gärdenfors [1] 
suggested. The conceptual space is a metric world in which objects and abstract 
concepts are represented by quality dimensions. The concept has several domains to 
distinguish it from other concepts. Thus, a specific concept forms a set of regions from 
the domains in the conceptual space. Each domain is composed of sensor-derived 
quality dimensions, and the primary function of the domain is to represent various 
qualities of situations or objects. As a result, the linkage between a concept and 
domains allows the conceptual space avoid the symbol-grounding problem. Because 
the quality dimension is a metric world, the similarity, which is quite important in 
learning and induction, can be measured easily. To deal with potential sensor and 
representation differences, we abstract raw sensory data into natural object properties 
such as color, features, chemical composition, and so on. In addition, in conceptual 
spaces, properties of the concept are regions in a domain. The regions can represent all 
samples of a concept. To represent the regions of a property, we use a Gaussian 
Mixture Model because a property of a concept cannot be represented by one Gaussian 

                                                            
1 The work in this paper was funded under the U.S. Army Research Laboratory Micro Autonomous Systems 
Technology Collaborative Technology Alliance  (ARL MAST CTA) project (BAE # 329420.) 
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in some cases. Also, we introduce a decision making process based on the conceptual 
space.  

Earlier research in our laboratory [2-4] focused on limited heterogeneity in the 
sensors between robots. In our ongoing research as part of the Army Research 
Laboratory’s Microautonomous Systems Technology Collaborative Technology 
Alliance, we are extending this previous work to incorporate sensor, power, 
communication, and computation impoverished micro-platforms with the goal of being 
able to provide fully distributed team coordinated control for search and rescue, 
biohazard detection, and other related missions [5]. 

1. Overview of Conceptual Spaces 

The conceptual space that Gärdenfors [1] suggested is a metric world in which 
objects and abstract concepts are represented by quality dimensions. A specific concept 
is a set of regions from the domains within the conceptual space. Each domain is 
composed of quality dimensions, and the primary function of the domain is to represent 
various qualities of situations or objects.  

The quality dimensions are qualities which can be acquired from sensors. 
Examples of qualities are temperature, shape, taste, and so on. Qualities cannot only be 
explicit features of objects but also abstract non-sensory characters such as fatigue and 
joy. A concept may also contain salience weights for properties and correlations 
between the properties. For some concepts, a property can be more important than 
others, and this can be influenced by task context. For example, let’s look into how to 
represent the apple in the conceptual space. The apple is a concept and has diverse 
properties such as taste, color, shape. Each property can be mapped into one domain 
composed with quality dimensions. As figure 1 illustrates, the color domain of the 
apple has three quality dimensions: R, G, and B.  

 
Figure 1.  Properties of the apple 

The varieties of apples are many, so the properties of the apple are represented as a 
region of a domain. For instance, if a robot detects the color of an apple and shape 
using a camera, sensor data from the camera is represented as a point within the quality 
dimensions and it can be decided whether or not the point is an apple by checking if the 
region of properties of the apple includes the point or by measuring the distance 
between the point and the prototype concept of the apple.  

Consequently, the theory of conceptual spaces can yield a solution to the symbol-
grounding problem that traditional methods of knowledge representation suffer from.  
Moreover, the conceptual space representation provides a natural way of representing 
similarities, and this ability is one of its major advantages. 



1.1.  Conceptual Space Definition 

A conceptual space is defined as C. The conceptual space is composed of a symbol 
space ௌܵ  and a concept space ܥௌ  [6]. In the symbol space, several symbols can be 
defined, and each symbol names a concept. An ith concept is denoted by ܿ௜. A concept 
has properties that are defined as ܿሺ݅ሻ ൌ ܿሺ ଵܲ, ଶܲ, … , ௡ܲሻ and each having a range [0, 1]. 
An ith property of a kth symbol is denoted by ݌ሺ݇, ݅ሻ ൌ ௞ܲ,௜ . A set of concepts 
ሼܿሺ݅ሻ, ݅ ൌ 1,… , ܰሽ is covered by ௌܵ. Note that concepts are regions in conceptual space, 
but properties are regions in domains. A domain is represented as ܦ௜, and the concept 
space, ܥௌ  is composed of domains. For instance, we can define the concept of a 
biohazard, (which is used in the test scenarios we are developing) as ܿሺ1ሻ ൌ
ܿሺ ଵܲ,ଵ, ଵܲ,ଶሻ, and ଵܲ,ଵ is in the color domain ܦଵ, and ଵܲ,ଶ is in the temperature domain 
  .ଶ. Perceptual features are projected to each domain as shown in figure 2ܦ

 

                        

                       
Figure 2. Schematic of conceptual space and abstract sensor layer 

A prototype is the centroid of a property and serves as the most representative 
value of a property. Moreover, since we can categorize a sensed object by finding the 
closest prototype to the object, it is useful in categorization. We define the prototypical 
value as ݂ሺ݇, ݆ሻ in the domain ܦ௝ of the labeled with a kth symbol. Figure 3 describes 
the prototype of the biohazard in several domains.  

Not all qualities are equally important to a concept, so we need to define the 
relative importance between properties. The importance of ௜ܲ  in domain ܦ௝ሺ௜ሻ  to 
concept ܿ௞ is referred as ߙሺ݇, ݆ሺ݅ሻሻ. For instance, chemical composition is a primary 
property in detecting a chemical weapon, since these objects have unique chemical 
compositions. Thus, the property must have significantly higher importance than others. 
As figure 3 illustrates, the chemical composition domain ܦଶ has much less overlap than 
the other domains ܦଵ, ܦଷ. Therefore, the chemical domain is the most informative in 
discriminating the biohazard from the trash can. 

1.2. Similarity in Conceptual Space 

  As objects can be represented as property vectors in conceptual spaces, the 
definition of similarity of objects is relatively intuitive and easy. The similarity [1] [6] 
is the distance between objects (and prototypes) and it is one of the main advantages of 



this representation. Like distance, similarity is a real valued non-negative function and 
has several properties: The similarity should be maximum when distance is zero and 
decrease with distance and be zero when computing the similarity with inapplicable 
point. So, we define the similarity (s) between objects a and b with the following 
equation: 

,ሺܽݏ ܾሻ ൌ ሺ1 ൅ ݀ሺܽ, ܾሻሻିଵ. 
As a result, a concept (c) in the symbol space can be computed with the following 
equation: 

ܿሺ݇ሻ ൌ෍ߙሺ݇, ݅ሻ · ,ሺ݇݌൫ݏ ݅ሻ, ݂ሺ݇, ݅ሻ൯
௡

௜ୀଵ

. 

,ሺ݇݌൫ݏ ݅ሻ, ݂ሺ݇, ݅ሻ൯ is the similarity between an ith prototype and the ith property in a kth 
concept. ߙሺ݇, ݅ሻ is the importance of the ith property in the kth domain. n is the number 
of properties in a concept. For instance, one microrobot robot detects the color of an 
object, and the color domain is updated. In order to calculate the concept of the 
biohazard, ܿሺ1ሻ, the temperature, ܦଵ, the chemical composition, ܦଶ, and the color, ܦଷ 
are required.  

 

                  
Figure 3.  (Left) Potential Biohazard Object   (Right) Notation for prototypes. (Adapted from [6]). Note that 
a similarly shaped and colored trashcan may be indistinguishable, but the chemical composition, which has 

no overlap provides the basis for disambiguation.  

1.3. Abstract Sensor Layer 

In this section, the process to convert sensor data to vectors which can represent a 
property of an object is described, in this case, a bio-weapon. Each robot has a set of m 
disjoint sensors, ܵ ൌ ሼݏଵ, ,ଶݏ … ,  ,௠ሽ. We denote the number of sensors as |S|. At time tݏ
the robot receives an observation vector ݋௧,௜ from each sensor, ݏ௜, resulting in a set of 
measurement or observation vectors, ܱ ൌ ሼ݋௧,ଵ, ,௧,ଶ݋ … ,  ௧,|ௌ|ሽ. We denote the robots݋
with a superscript, so that ݏ௜

௝ is sensor i of robot j. Sensor data provide a stream of 
unprocessed information so it is presumed that each robot has a set of p feature 
detectors, ܨ ൌ ሼ ଵ݂, ଶ݂, … , ௣݂ሽ, that further process observations and output perceptual 
features. We denote specific values of a set of features at time, t as ܨ௧, and the specific 
value of a feature i as   ௧݂,௜ . A feature detector is a function, φ, that maps a set of 
observation vectors into a set of feature vectors. For instance, ௜݂ୀφሺ݋௙೔ሻ where ݋௙೔ א ܱ 
denotes the set of input observations used by the feature detector. 

Figure 4 (left) depicts sensors, observations, and perceptual features for a robotic 
flyer tasked for this mission. The robot has three sensors, ܵி ൌ ሼݏଵி, ,ଶிݏ  ଷிሽ: mm-waveݏ
radar, micro gas chromatograph, vision sensor, and thermal IR camera. A thermal IR 
camera provides a color image that each pixel stands for a temperature, and a blob 



detector takes a thermal image as input and outputs a vector specifying a list of blobs 
found and their positions. After calculating an average RGB color of the output regions 
of the blob detector in a thermal image, temperature can be found based on a table 
lookup. Therefore, the feature detector,  φ௧,ଶ

ி , contains the whole process to get 
temperature from a thermal image.  

 
Figure 4. (Left) Flyer robot  (Right) Crawler robot 

 
The feature detector, φ௧,ଵ

ி , for a mm-wave radar differs from φ௧,ଶ
ி  because we need to 

extract features of a shape from a radar image. Instead of using the blob detector, we 
will use the line approximation to represent shapes in a radar image. Therefore, the 
feature, ௧݂,ଵ

ி , is composed with feature points of a recognized shape so that we can 
measure Euclidean distance between a detected feature and a prototype of a barrel 
shape. The feature detector, φ௧,ଷ

ி , for a vision sensor is to extract blobs from an image, 
and then returns an average RGB color of a blob as a feature as Figure 6 (b) illustrates.  

According to the scenario, the crawler has a micro gas chromatograph and a HAIR 
sensor, and Figure 4 (right) describes the feature detector of a crawler. Since raw sensor 
data of the micro gas chromatograph can be used in measuring Euclidean distance, the 
feature detector, φ௧,ଵ

஼  is a null function, but φ௧,ଶ
஼  will not be used in a property in the 

conceptual space since direction of air flow cannot be a property of an object. However, 
it can be combined with the sensor data of the micro gas chromatograph for a robot to 
move to the source of a biohazard using chemotaxis.  

1.4. Learning Properties from Samples 

In conceptual spaces, properties of the concept are regions in a domain. The 
regions can represent all samples of a concept. To represent the regions of a property, a 
Gaussian Mixture Model (GMM) [9] is used because a property of a concept cannot be 
represented by one Gaussian in some cases. For example, the color of an apple has 
several values (e.g. yellow, red, green), so representing the color with one Gaussian is 
not efficient.  

The GMM is a parametric probability density function represented as a weighted 
sum of Gaussian component densities: 

ሻߠ|ݔሺ݌ ൌ෍ݓ௜ · ,௜ߤ|ݔሺ݌ ௜ߑ

ெ

௜ୀଵ

ሻ 

where x is feature vector for a property, and M is the number of Gaussian density 
functions. ݓ௜ is known as the mixing proportions, 



0 ൑ ௜ݓ ൑ 1,෍ݓ௜

ெ

௜ୀଵ

ൌ 1. 

 ,is a set containing all of the mixing proportions and model parameters ߠ
ߠ ൌ ሼݓ௜, ,௜ߤ ௜ሽ ௜ୀଵெߑ  . 

,௜ߤ|ݔሺ݌ ,௜ሻߑ ݅ ൌ 1,…   ,are the component Gaussian densities ,ܯ,

,௜ߤ|ݔሺ݌ ௜ሻߑ ൌ
1

ඥሺ2ߨሻௗߑ௜
݌ݔ݁ ൬െ

1
2
ሺݔ െ ݔ௜ିଵሺߑ௜ሻ்ߤ െ  .௜ሻ൰ߤ

Since each property is modeled as a mixture of Gaussians, a data association 
problem must be solved. There will be several clusters in the space, and the algorithm 
must first determine which cluster the data belongs to before updating the parameters 
of the model. The method used to solve this is Expectation Maximization, which 
alternates between estimating the association of the points to the clusters and updating 
the parameters of the clusters given the association.  

2. Summary  

We have presented the underpinnings of an overall robotic architecture being 
developed for use in sharing knowledge across heavily constrained microautonomous 
platforms with respect to power, communication, sensing, and computation.  The target 
system architecture is illustrated in Figure 5. 

 
Figure 5: Overall System 
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